2,143 research outputs found

    STRING and STITCH: known and predicted interactions between proteins and chemicals

    Get PDF
    Information on protein-protein and protein-chemical interactions is essential for understanding cellular functions. The STRING and STITCH web resources integrate interaction evidence derived from pathways, automatic literature mining, primary experimental data, and genomic context. The resulting interaction networks cover 1.5 million proteins from 373 organisms and 68,000 chemicals

    Definition of Fiducial Points in the Normal Seismocardiogram

    Get PDF
    Abstract The purpose of this work is to define fiducial points in the seismocardiogram (SCG) and to correlate them with physiological events identified in ultrasound images. For 45 healthy subjects the SCG and the electrocardiogram (ECG) were recorded simultaneously at rest. Immediately following the SCG and ECG recordings ultrasound images of the heart were also obtained at rest. For all subjects a mean SCG signal was calculated and all fiducial points (peaks and valleys) were identified and labeled in the same way across all signals. Eight physiologic events, including the valve openings and closings, were annotated from ultrasound as well and the fiducial points were correlated with those physiologic events. A total of 42 SCG signals were used in the data analysis. The smallest mean differences (±SD) between the eight events found in the ultrasound images and the fiducial points, together with their correlation coefficients (r) were: atrial systolic onset: −2 (±16) ms, r = 0.75 (p < 0.001); peak atrial inflow: 13 (±19) ms, r = 0.63 (p < 0.001); mitral valve closure: 4 (±11) ms, r = 0.71 (p < 0.01); aortic valve opening: −3 (±11) ms, r = 0.60 (p < 0.001); peak systolic inflow: 13 (±23) ms, r = 0.42 (p < 0.01); aortic valve closure: −5 (±12) ms, r = 0.94 (p < 0.001); mitral valve opening: −7 (±19) ms, r = 0.87 (p < 0.001) and peak early ventricular filling: −18 (±28 ms), r = 0.79 (p < 0.001). In conclusion eight physiologic events characterizeing the cardiac cycle, are associated with reproducible, well-defined fiducial points in the SCG

    Simulation of a Diesel Engine with Variable Geometry Turbocharger and Parametric Study of Variable Vane Position on Engine Performance

    Get PDF
    Modelling of a turbocharger is of interest to the engine designer as the work developed by the turbine can be used to drive a compressor coupled to it. This positively influences charge air density and engine power to weight ratio. Variable geometry turbocharger (VGT) additionally has a controllable nozzle ring which is normally electro-pneumatically actuated. This additional degree of freedom offers efficient matching of the effective turbine area for a wide range of engine mass flow rates. Closing of the nozzle ring (vanes tangential to rotor) result in more turbine work and deliver higher boost pressure but it also increases the back pressure on the engine induced by reduced turbine effective area. This adversely affects the net engine torque as the pumping work required increases. Hence, the optimum vane position for a given engine operating point is to be found through simulations or experimentation. A thermodynamic simulation model of a 2.2l 4 cylinder diesel engine was developed for investigation of different control strategies. Model features map based performance prediction of the VGT. Performance of the engine was simulated for steady state operation and validated with experimentation. The results of the parametric study of VGT’s vane position on the engine performance are discussed

    Development of a Fuel Quantity based Engine Control Unit Software Architecture

    Get PDF
    &nbsp; &nbsp;Conventionally diesel engines are controlled in open loop with maps based on engine speed and throttle position wherein fuel quantity is indirectly fixed using the rail pressure and injection duration maps with engine speed and throttle position as the independent variables which are measured by the respective sensors. In this work an engine control unit (ECU) software architecture where fuel quantity is directly specified in relation to the driver demand was implemented by modifying the control logic of a throttle position based framework. A desired fuel quantity for a given engine speed and throttle position was mapped from base line experiments on the reference engine. Injection durations and rail pressure required for this quantity was mapped on a fuel injector calibration test bench. The final calculation of injection duration in the new architecture is calculated using the fuel injector model. This enables determination of fuel quantity injected at any moment which directly indicates the torque produced by the engine at a given speed enabling smoke limited fuelling calculations and easing the implementation of control functions like all-speed governing

    Coleman - de Luccia instanton of the second order in a brane world

    Full text link
    The second order Coleman - de Luccia instanton and its action in the Randall - Sundrum type II model are investigated and the comparison with the results in Einstein's general relativity is done in the present paper.Comment: 4 pages, accepted in IJT

    Development and Demonstration of Control Strategies for a Common Rail Direct Injection Armoured Fighting Vehicle Engine

    Get PDF
    The development of a controller which can be used for engines used in armoured fighting vehicles is discussed. This involved choosing a state of the art reference common rail automotive Diesel engine and setting-up of a transient engine testing facility. The dynamometer through special real-time software was controlled to vary the engine speed and throttle position. The reference engine was first tested with its stock ECU and its bounds of operation were identified. Several software modules were developed in-house in stages and evaluated on special test benches before being integrated and tested on the reference engine. Complete engine control software was thus developed in Simulink and flashed on to an open engine controller which was then interfaced with the engine. The developed control software includes strategies for closed loop control of fuel rail pressure, boost pressure, idle speed, coolant temperature based engine de-rating, control of fuel injection timing, duration and number of injections per cycle based on engine speed and driver input. The developed control algorithms also facilitated online calibration of engine maps and manual over-ride and control of engine parameters whenever required. The software was further tuned under transient conditions on the actual engine for close control of various parameters including rail pressure, idling speed and boost pressure. Finally, the developed control strategies were successfully demonstrated and validated on the reference engine being loaded on customised transient cycles on the transient engine testing facility with inputs based on military driving conditions. The developed controller can be scaled up for armoured fighting vehicle engines

    A model for slip and drag in turbulent flows over superhydrophobic surfaces with surfactant

    Get PDF
    International audienceSuperhydrophobic surfaces (SHSs) can reduce the friction drag in turbulent flows. In the laminar regime, it has been shown that trace amounts of surfactant can negate this drag reduction, at times rendering these surfaces no better than solid walls (Peaudecerf et al., Proc. Natl. Acad. Sci. USA 114(28), 7254-9, 2017). However, surfactant effects on the drag-reducing properties of SHSs have not yet been studied under turbulent flow conditions, where predicting the effects of surfactant in direct numerical simulations remains expensive by today’s standards. We present a model for turbulent flow inclusive of surfactant, in either a channel or boundary-layer configuration, over long but finite-length streamwise ridges that are periodic in the spanwise direction, with period and gas fraction . We adopt a technique based on a shifted log law to acquire an expression for the drag reduction. The average streamwise and spanwise slip lengths are derived by introducing a local laminar model within the viscous sublayer, whereby the effect of surfactant is modelled by modifying the average streamwise and spanwise slip lengths. Our model agrees with available laboratory experimental data from the literature when conditions are clean (surfactant-free), or when there are low surfactant levels. However, we find an appreciable drag increase for larger background surfactant concentrations that are characteristic of turbulent flows over SHSs for marine applications

    Chern-Simons functional and the no-boundary proposal in Bianchi IX quantum cosmology

    Get PDF
    The Chern-Simons functional SCSS_{\rm CS} is an exact solution to the Ashtekar-Hamilton-Jacobi equation of general relativity with a nonzero cosmological constant. In this paper we consider SCSS_{\rm CS} in Bianchi type IX cosmology with S3S^3 spatial surfaces. We show that among the classical solutions generated by~SCSS_{\rm CS}, there is a two-parameter family of Euclidean spacetimes that have a regular NUT-type closing. When two of the three scale factors are equal, these spacetimes reduce to a one-parameter family within the Euclidean Taub-NUT-de~Sitter metrics. For a nonzero cosmological constant, exp(iSCS)\exp(iS_{\rm CS}) therefore provides a semiclassical estimate to the Bianchi~IX no-boundary wave function in Ashtekar's variables.Comment: 9 pages, REVTeX v3.0. (One reference added.
    corecore